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STOCHASTIC CALCULUS AND SURVIVAL ANALYSIS

by

Ian W. McKeague

and
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ABSTRACT

This paper gives a brief survey of the uses of stochastic calculus in survival analysis. The role

played by martingale central limit theory in deriving asymptotic distributions of estimators and test

statistics is described. The Nelson-Aalen estimator, Kaplan-Meier estimator, Cox's poportional

hazards model, Aalen's additive risk model and a goodness-of-fit test for Cox's model are discussed.

Sketches of the proofs of the main results are included.
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I.-

1. Introduction

Beginning with Aalen's 1975 thesis from Berkeley, there has been a rapid increase in the use

of stochastic calculus as a tool in the study of survival analysis. Aalen realized that multivariate

counting processes provide a natural framework for the study of censored survival data and that a

central role is played by martingales, predictable processes and stochastic integrals. The counting

process approach has been successfully applied in the study of Nelson's cumulative hazard esti-

mator (Aalen, 1978), the Kaplan-Meier product-limit estimator (Aalen and Johansen, 1978; Gill,

1980, 1983), nonparametric k-sample tests (Andersen et al., 1982) and Cox's proportional hazards

regression model (Andersen and Gill, 1982), to name just a few examples.

The list of such applications is now quite long, and as new estimators, models and data

structures are introduced, they too can often be treated under the umbrella of the counting process

approach. Some of the benefits of this are: (1) we can bring to bear powerful results from the theory

of stochastic processes; (2) more general censoring patterns can be allowed; (3) i.i.d. assumptions

no longer play a central role; (4) straightforward, yet rigorous, proofs can be given. Although

some background in stochastic processes is needed to appreciate these advantages, it turns out (as

remarked by Arjas, 1985) that the a-fields and martingales involved are far more concrete and

practical than the traditional appoach via elementary mathematics.

The purpose of the present paper is to outline these developments with special emphasis on

some of the recent applications of Rebolledo's martingale central limit theorem to the study of

asymptotic distributions of estimators and test statistics. We shall make no attempt to review

the stochastic calculus relevant to survival analysis, but rather refer to the books of Liptser and

Shiryayev (1978), Elliott (1982) and Kopp (1984) as necessary. Earlier survey articles and books

containing material on the use of counting process theory in survival analysis have been written

by Gill (1980), Jacobsen (1982), Davis (1983), Andersen and Borgan (1985), Shorack and Wellner

(1986), Karr (1986) and Prakasa Rao (1987). We also mention the forthcoming book of Andersen,

Borgan, Gill and Keiding (1988).

2. The Nelson-Aalen and Kaplan-Meier estimators

2.1. Cumulative hazard and survival functions

Let T, representing the survival time of an individual, be a positive random variable with

distribution function F having a density f. The hazard function (or failure rate function) of T

is defined by A(t) = f(t)/S(t) for t such that S(t) 1 - F(t) > 0. Here S is called the survival

function. Since

\(t) = lim P(t<T<t+At)T>t)
At~o At

we may interpret A(t)At as the probability of failure in the time interval t to t + At given survival
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up to time t. It is easily seen that the hazard function determines the distribution. For

d
A(t) = -T logS(t),

so that, in terms of the cumulative hazard function A(t) = fj A(a) d8, we have S(t) = e- A(t).

When F does not have a density, the hazard function cannot be defined, but the cumulative

hazard function is defined by

A(t) = ~~ 1 dF(u).1~t S(U-)

for t such that S(t-) = limlt S(u) > 0. The survival function can be represented in terms of the

cumulative hazard function by S = E(-A), where e is the Dolians-Dade exponential defined by

the following result.

Theorem 2.1. (A special case of Dol6ans-Dade (1970)) Let X be a right-continuous function of
bounded variation with Xo = 0. Then the equation

Z= I+Jfo~Z.- dX.

has a unique solution which is bounded on finite intervals. The solution, denoted ( (X)t, is given

by Zt equal to
C ex IJ(1 + AX.), 5

where Xt = Xt - .<t AX.; AX. = X. - X.-

A proof of this result can be found in Liptser and Shiryayev (1978, pp.255-256). As an
immediate consequence (see Wellner, 1985) we obtain the formula

S = r(-A), (2.1)

since S satisfies the equation

S(t) = 1+ /0jt S(u-) d(-A(u)).

An alternative way of representing S in terms of A is to use product integration. Let X be a finite
Borel measure on the positive real line and denote its distribution function by the same symbol:

X(t) = X((O,t]). The product integral of X is defined by

17 (1 + dX) = lim l (1 + X((t,_.1 ,t1 1))
(O,tj

where 0 = to < t < < t, t is a partition of (0, t]. It can be shown (see Gill and Johansen,

1988) that b
S(t) " "(1 - dA). (2.2)

2
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.2. Random censorship models and the counting process formulation

Censoring is a general phenomenon which affects many types of data. In survival data it S

typically takes the form of random right or left censorship. For example, consider a study for

determining the age T at which a certain chronic disease or other permanent condition appears

in an individual. Right censoring occurs if the individual dies or leaves the study before the

disease appears. However, the disease may have already appeared before the individual entered

the study, and this results in left censoring. In each case, the exact value of T cannot be determined,

but some useful information is still available. One of the most elegant features of the counting

process formulation is that it unifies these and more general censoring schemes under the notion of
"predictable censoring". Estimators of the survival function based on right-censored data (Kaplan

and Meier, 1958), left-censored data (Woodroofe, 1985) or doubly-censored data (Chang and Yang,

1987) can then be studied in a unified way.

Define the basic counting process Nt* = I(T < t). In the absence of censoring, Nt* is the only

counting process we need to consider. To introduce censoring into the picture, let (Ct, t > 0) be

a (0, 1)-valued stochastic process, called the censoring process, which is understood to indicate p
censorship at time t if Ct = 0. The observed counting process is given by

fOd * f1 ifT<tandCT=
Nt=Z C.odN.' = 0 otherwise.

Next, define yT - o(N, s t), the o-field generated by N" up to time t. Let (§t) be a right-

continuous filtration such that 9t is independent of T for all t and write Ft =t V 9t, the o-field

generated by It' and 9t. Also define the processes RP = I(T 2! t) and Yt = Ct Rt, so that Y is the

indicator that the individual is observed to be at risk at time t. The following result is crucial.

Theorem 2.2. Suppose that the censoring process (Ct) is predictable with respect to the filtration

(I). Then the process

A = Nt -f Y dA. (2.3)

is an It-martingale. S

In the language of counting processes this result is saying that the counting process Nt has

compensator At = fo Y. dAa with respect to the filtration (It), see Liptser and Shiryayev (1978, p.

239). If T has a hazard function A(t), then the result implies that Nt has intensity process YA(t)

and we may write (2.3) in the form of a stochastic differential equation:

dNt = Yt,(t) dt + dMt.

The result is intuitively reasonable in view of the interpretation of YA(t) dt as the probability of

observing a failure in the time interval t to t + dt given survival up to time t.

The censoring process (Ct) is left-continuous in most applications, so in order to show that it

is predictable, it suffices to show that it is (Y)-adapted. In particular, the usual random right or
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left censorship schemes are obtained by taking Ct = I(L < t < C), where L and C are the left
and right "censoring times* respectively, assuming that (L, C) is independent of T, and setting

9t = 9o = a(L,C). Note, however, that the defintion of predictable censoring is much more
general than this.

Proof of Theorem 2.2. The main step in the proof is to show that M," = Nt - ft RdA, is
an It3-martingale. Then, since 9t is independent of ItT, it follows from a standard result on
conditional expectation (see Chung, 1974, p.308) that M* is an It-martingale. Consequently, since
Mt = fj C.dM. can be interpreted as a stochastic integral (see Kopp, 1984, p.149), Mt is an
T-marting1!-. Now to show that M," is an martingale, let u < t and note that

E(M - M*i17 T) = E(I(T > u) (M " - M*) I7.T) = I(T > u) E (M - M IT > u)

since A n {T > u} is either the empty set or {T > u) for any A E T. Also

E (Nt - N.* IT> u) =F(t) - F(u)
S(u)

and with At = ft R dA,

E(At - A.IT > u) = E(At - AIT > t)P(T > tIT > u)

+ E(Aj - Alu < T < t)P(T < tt > u)
(A~t) S(t) f (A(v) - A(u)) dF(v) (F(t) - F(u))=(A(t) - A(,,))--t + Fv
-(t) - F() S(u)

1 ~u S(v-) dA(v)

F(t) - F(u) = E(N - NIT > u),
S(u)

where we have used the integration by parts formula for Stieltjes integrals (see Liptser and

Shiryayev, 1978, p.253). This completes the proof.
The basic idea in the above proof is that the martingale property of (Mt*, 7T) is preserved

when independent events are added to 7tT. It is natural to ask "How much can we enlarge t7T,

while preserving the martingale property of AMq ?" We know of no general answer to this question,
although some recent work of Jacobsen (1986, 1988) dealing with right-censoring is of interest in
this regard.

To extend the counting process formulation to n individuals with corresponding survival times
TI,...,T., introduce processes Ni, Yi, M, i = 1,...,n and filtrations (Fi), i = 1,...,n having the
same structure as N, Y, M and (4). It is convenient to view the martingales Mi, i = 1, ...,n with
respect to the same filtration. If 7 j, ... , Yrlt are independent u-fields for all t, then MI,..., Mn are

martingales (in fact orthogonal martingales) with respect to the filtration (")= i V-.- V 1nt.

For some applications, however, it may be too restrictive to assumtr. that the Ft are independent.

4



The general counting process formulation does not require any such assumption; it only requires
that MI,..., M,, are martingales with respect to some filtration (t(1).

Aalen's (1978) multiplicative intensity model can now be formulated as follows. Let N(t) =

(NI (t), ... , N.(t))', t E [0, 11 be a multivariate counting process with respect to a right-continuous fil-
tration (A)), i.e. N is adapted to the filtration and has components N which are right-continuous

step functions, zero at time zero, with jumps of size +1 such that no two components jump simul-

taneously. Suppose that the counting process Ni has intensity

Ai(t) = Y(t) A(t), (2.4)

where Y,(t) is a predictable {0, 1)-valued process and A is a fixed hazard function. By Davis (1983,

Proposition 4.2)

Mo A)(s)ds, i=I,...,n (2.5)

are orthogonal local square integrable martingales on [0, 1] with predictable variation process

(Mi, M)t = Jo A(s) ds. (2.6).

If E N,(1) < oo then Mi is in fact a square integrable martingale on [0, 1]. As Aalen does, we shall

assume throughout that M,, i = 1, ... , n are square integrable martingales.

2.9. The Nelson-Aalen estimator

An estimator for the cumulative hazard function A was introduced by Nelson (1969) in the case

of right-censored survival data, and extended by Aalen (1975, 1978) to his multiplicative intensity

model. The so called Nelson-Aalen estimator is defined by

t)= d N ( ) (s )

where N( ) = = N,, y(n) = Y= 1' and 1/0 _= 0. A motivation for this estimator is provided

by formally solving the stochastic differential equation

(n) y nldA, + dM(n) (2.7) A

(where M ( n ) - - M) for At and ignoring the "noise" term ft d (which is a martingale).

The asymptotic distribution of A can be derived under the following asymptotic stability

condition:

(AS) There exists a function p, bounded away from zero on 10, 1], such that ( (n) ()(t)

satisfies

sup I?(")() - p(t)lO as , -- o.
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Note that in the i.i.d. case, in which 1', i = 1,...,n are i.i.d. replicates of one another and Y
has left-continuous paths with right hand limits, the asymptotic stability condition (AS) can be

checked using Ranga Rao's (1963) law of large numbers. Let D[0, 1] denote the space of functions
on [0,1] which are right-continuous on [0, 1) with left limits on (0,1], and equip it with the Skorohod
topology (see Billingsley, 1968, p.1 11). Convergence in distribution will be denoted .

Theorem 2.3. (Aalen, 1978) Suppose that the asymptotic stability condition (AS) holds. Then,
under Aalen's multiplicative intensity model, vf/(! - A)-Pm in D[0, 1] as n - oo, where m is a

continuous Gaussian martingale with covariance function

Coy(e, Mt) = SA du.

Proof. Using (2.7) we have

Vn-(t)- A(t)) - Jt4") _ "n, (2.8)

where
- 1 ' dM()(s) n) ()() 0) dA'.

Since the condition (AS) implies that

sup IR I 0, (2.9)

to complete Lthe proof it suffices to show that X(")- +m in D[0, 1]. Note that X4') is a square
integrable t(")-martingale. Now apply the version of Rebolledo's (1980) martingale central limit
theorem stated in Andersen and Gill (1982) with p 1 and Hn) (t) =n-(n)(t))-1. By (2.5),

(2.6) and (AS) we have

(j=q( 1) , A((:))) -- d ds -- s ds. (2.10)

The Lindeberg condition, here given by

1j8) > ds-P0

for all c > 0, follows from (AS). This completes the proof.
It is possible to use Theorem 2.3 to construct confidence bands for A, see Andersen and

Borgan (1985, p. 114). In many applications it is of interest to estimate the hazard function A

itself. It is possible to develop an asymptotic distribution theory for pointwise estimators of A(t),
1(t) say, using Rebolledo's martingale central limit theorem, much as in the proof of Theorem 2.3.

This has been done for kernel estimators (Ramlau-Hansen, 1983), spline sieve estimators (Karr,
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1987), grouped data based estimators (Borgan and Ramlau-Hansen, 1985; McKeague, 1988b)

and penalized maximum likelihood estimators (Antoniadis, 1987). Integrating any one of these

estimators provides another estimator fo i(s) da of A, which (not surprisingly) turns out to have

the same asymptotic distribution as the Nelson-Aalen estimator.

2.4. The Kaplan-Meier estimator

In view of (2.1) and (2.2) it is reasonable to estimate the survival function S by the Dolans-

Dade exponential or product integral of -A, where A is the Nelson-Aalen estimator. Define

= (t) A)t = l-[ (I -A)

Since the continuous part of A is zero, S reduces to the so called "product-limit" estimator

=A W

J<t

which was originally introduced by Kaplan and Meier (1958) in the case of right-censored survival

data.

Breslow and Crowley (1974) gave the first proof of weak convergence of the Kaplan-Meier J.

estimator; Gill (1980, 1983) gave a proof based on martingale methods. We shall present Gill's

proof in the context of the multiplicative intensity model. In the classical i.i.d. random censorship

model other proofs are possible. Gill and Johansen (1988) recently gave a proof using Hadamard

differentiability and a functional version of the delta method. That approach works for general

(not necessarily continuous) survival functions and can be used to study the asymptotic behavior

of the bootstrapped Kaplan-Meier estimator; see Gill (1987). David Pollard (1988) has informed

us that a proof via the theory of empirical processes is also possible. We refer the reader to Akritas

(1986), Horvith and Yandell (1987) and Lo and Singh (1986) for results on the bootstrapped

Kaplan-Meier estimator.

Theorem 2.4. Suppose that the asymptotic stability condition (AS) holds. Then, under Aalen's

multiplicative intensity model, vfn-(S- S).+S(.) m(.) in D[0, 1] as n - oo, where m is the Gaussian

martingale of Theorem 2.3.

Proof. First note that &(A - A)t 6 (A)t((-A)- St/St, so, by Theorem 2.1,
It5

StSSt -+1f - d(A- )(u). 5.

Thus, using (2.8), we obtain

7.
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where R 4) . a remainder term (different from the original R;")) satisfying (2.9). To complete the
proof, it suffices to show that rb(")-,*m in D[O, 1], where

Now jn(n) is a square integrable martingale with predictable variation process

(Fn)e(n)t Su[_]2 '(u) du.= S.'(n,) (,,)

Thus, by (AS), we have (,in(n),'n(n)), = Op(1). Using Lenglart's (1977) inequality and (2.11) it

follows thatsupt ol 1t - StI-',O. Hence

JP(U)~ '

The Lindeberg condition for in(') is checked in the same way it was checked for KI(n). The result
follows by Rebolledo's martingale central limit theorem.

It is natural to ask whether the above results have any extension to two-dimensional survival
times, T = (T1,T2 ) say. Data of that kind can arise, for example, in a study of the ages T1 , 2'2 at
which two different chronic diseases appear in an individual. Unfortunately, many of the techniques 9
that are useful in the univariate case are no longer applicable in the bivariate case. In particular,
a two-parameter martingale central limit theorem is not available. The best results that are
currently available are all for the i.i.d. case with right censoring and rely on classical methods; see
Tsai, Leurgans and Crowley (1986) for instance.

3. Regression models for survival data

In most applications of survival analysis it is important to consider the effects that covariates S
may have upon the survival times of individuals in the study. This can be done by using a regression
model for the conditional hazard function A(t, z) = A(tlz) of the survival time of an individual who
has a covariate vector x = (Zi, ... , zp)', say, at time t. The well known proportional hazards model . l-
of Cox (1972) has been the most popular model, but in recent years other models have begun to be
considered. We list Cox's model and various other alternative nonparametric and semiparametric
models with which we are familiar as follows.

(1) Cox's (1972) proportional hazards model:

(t Z o (t) CO

8
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where Ao is an unknown baseline hazard function and 6o is a vector of p unknown parameters.

(2) Aalen's (1980) additive risk model:
p

Atz) E 3cei (t) zi,
3--1

where Or, ... , ctp are unknown functions.

(3) The general nonparametric model. Beran (1981) considered

A(t, z) is arbitrary.

(4) Variations on Cox's model. The general proportional hazards model

X(tz) = Ao(t) r(z),

where A0 is an unknown baseline hazard function and r is an unknown "relative risk" func-
tion was proposed by Thomas (1983). Hastie and Tibshirani (1987) suggested the generalized
additive model r(z) = ry(zy), where rl,..., rp are unknown functions. Prentice and Self

(1983) take r(z) = ro(#8'z), where ro is known and fo is a vector of p unknown parameters.
Zucker (1986) and Zucker and Karr (1987) generalized Cox's model by allowing flo to be time-

dependent.

Since the papers of Andersen and Gill (1982) and Aalen (1980), which developed asymptotic

theory for the models (1) and (2), martingale methods have been used to obtain asymptotic theory
for most of these models. In this section we review some of that work. Throughout we shall use
the following counting process framework, extending the multiplicative intensity model to allow
for covariates. Suppose that N(t) = (N(t),...,N.(t))' is a multivariate counting process with

respect to a right-continuous filtration (It(')). The counting process N, which records events in
the life of the ith individual, is assumed to have intensity process Ai(t) = Y1(t)A(t,Z,(t)), where
Y,(t) is a predictable {0, 1)-valued process as before, and Zi(t) = (Zil(t), ..., Zip(t))' is a p-vector

of predictable covariate processes. The martingales MI,..., M,, are again defined by (2.5). For

simplicity, we shall only consider the i.i.d. case in which (N,,Y,Z), i = 1,.. .,n are i.i.d. replicates
of (N,Y, Z). Also, assume that Y and Z are left-continuous with right hand limits and the covariate

processes are bounded.

8.1. Cox's proportional hazards model

In this section we shall briefly sketch the main results of Andersen and Gill (1982). We refer

to the review paper of Davis (1983) for an informal discussion of these results and the motivation

behind the estimators. For simplicity of presentation, we shall assume that the covariates are scalar
valued (p = 1).

9I



Cox (1972, 1975) proposed that inference for fo in (1) be based on the partial likelihood function

=nf eZ,(T) },

where 6, and Ti are the indi-ator of noncensorship and the survival time for the ith individual

respectively, and Ri is the "risk set* consisting of all individuals which are observed to be at risk

at time T. Let A be the value that maximizes L(P). In terms of the underlying counting processes,

the estimate A is the unique solution to - log L(P) =U(P, 1) = 0, where

U ('6't) n ,8tI(U) s (1) (fl, U)  .
U , _ _ ) daj (u), (3.1)

S W(,, t nZtyi(t) epz(t),(.2s(;)( ,t) = 1 =

for j -0, 1, 2, where 00 - 1. The following theorem gives the asymptotic distribution of ft. Define

( ')(i,t) = ES( )(,,t), e = ,(i)/.(o), v = s(2)/,(o) - e2 and E = v(Po,t) .(0) (lo,t) Ao(t) dt.

10.

Theorem 3.1. Suppose that Ao is integrable over [0,11, &M , is bounded away from 0 in a

neighborhood of fo, and E > 0. Then rI (A - flo)-'N (0, E- 1 ).

Proof. (Sketch) By the mean value theorem

U(A, 1) - U(Po, 1) = -1r(#*, 1) (ft -,6o), (3.3)

where p* lies between Po and A, and

I(fl,t) =-2UG ,t) = fts(2)( ,) (S(P') jdN(n)(U),a# 0 - o s(o) (0, ) smo(fl, ,)/

where N = ' N,. But U(A, 1) = 0, so from (3.3) we obtain

n (flo,1)n- _- 6o) = n. (3.4)

The key step in the proof is to see that U(Po, ") is a martingale:

u(0,) ,(U) - I ,i(u).

Let m, be a continuous Gaussian martingale with variation process

(, t = j v(Po, u) I(o) (no, u)Ao(u) du. (3.5)

10



Then
ftj (2 _(S(

1 ) (fo, U)) P
(niU(flo, .))t = Io (o, u)- (O)([°)oA°(u)duL.(m1)t

so by Rebolledo's martingale central limit theorem n-U(Po,-) -m, in D[O, 1]. Consequently,

-I U(,0, I)DN (0, E) and from (3.4), to complete the proof it suffices to show that n- 1 (/ *, 1)

+E. This is done in Andersen and Gill (1982, p.1108), but it is to be expected because they show

that f-Po 0, so P* Pfo, and we can write n-I(flo, 1) in the form

(1S(2) (/o U)_ (S(1 )(6o,U)) 2  1 for S(2 )(Po,u) (S(I(lo,U))2(u)
0S(O)(lo, U) nA~~u ; S(O)(,6o, u)  ( S(0) (/o, u)  }~ ()

where M() - = M. The first term above tends in probabilty to E and the second term tends

in probabilty to zero, by Lenglart's inequality.

Breslow (1972, 1974) suggested that the cumulative baseline hazard function Ao(t) =

o' Ao(a) ds could be estimated by a piecewise linear approximation to the Nelson-Aalen type esti-

mator

f dN(n) (u)
Jo nS(O) (ft u)

Theorem 3.2. Under the conditions of Theorem 3.1, Vr/(, - Ao)-. too(.) + 0() mi(1) in D0, 1),

where mo and ml are independent zero mean Gaussian martingales, (mi)t is defined by (3.5),

(mo)t = f (O 0  du and OW= t - e(o,u) (u)du.

9.2. Aalen's additive risk model

In some applications, additive risk models are more appropriate than proportional hazards

models. However, although parametric additive risk models have been used in survival analysis

(especially in epidemiology) for many years (see the references in Breslow, 1986; Muirhead and

Darby, 1987), the nonparametric additive risk model (2) has only been studied recently (Aalen,

1980; McKeague, 1986, 1988a, 1988b; Huffer and McKeague, 1988).

Let c = ( p,...,a)' and denote Yq (t) =Y (t)Zij(t), A(t) = ft ar(s)ds for fixed to, 0 5 to < 1.

Aalen (1980) proposed estimators A of A of the form A(t) = jo Y-(s) dN(s), where Y-(8) is

a predictable generalized inverse of the n x p matrix Y(s) = (Yi(s)). In the case p = 1, with

(Y-(s))lj = (FX"=Yhi()) - 1 , i = 1,...,n, A is the Nelson-Aalen estimator. For p > 1, Aalen

suggested using Y-(a) = (Y'(s) Y(s))-Y(s), where here and in the sequel, for any square matrix

(or scalar) D, D denotes the inverse of D if D is invertible, the zero matrix otherwise. Aalen

observed that this choice of Y- can be motivated by a formal least squares principle and that

11



the resulting estimator A(t) =f 0'. (Y'(.) Y(s))- 1 Y'(e) dN(s), referred to as Aalen's least squares
estimator, probably gives reasonable but not optimal estimates of A. Huffer and McKeague (1988)
proposed using the following generalized inverse of Y(s):

Y-i(s) = (Y' (a) IV (s) Y (8)) -, Y,(s) W (a), (3.6)

where WV(t) is the n x n diagonal matrix with ith diagonal entry r (t)= (Ai(t)) - 1, and

P

j=1

where &, is a predictable estimator of a$. The estimator & is taken to be the jth component of

the smoothed least squares estimator

a(t) = 11K(L--)dA(o),
where K is a left-continuous bounded kernel function having integral 1, support [0,1] and b. > 0
is a bandwidth parameter. The choice of generalized inverse (3.6) defines the so called weighted

least squares estimator

A(t) = f(Y'(s) V(s) Y(s)) -Y'(s)V(s) dN(a). (3.8)

In the case of a single covariate the weighted least squares estimator coincides with the Nelson-
Aalen estimator.

A heuristic explanation for the choice of weight matrix T'k(t) is as follows. By conditioning on
the past ) we may interpret the stochastic differential equation dN(t) =Y(t)a(t) dt + dM(t),
increment by increment, as standard linear regression model with heteroscedastic errors dM(t),
where M = (M1, ..., Mn)'. We should choose the weight matrix to be proportional to the inverse

of the error covariance matrix Cov(dM(t)T,(" ) ) = the n x n diagonal matrix with ith diagonal
entry Ai(t) dt. However, A,(t) depends on the unknown a(t). Estimating A,(t) by (3.7), where the
estimator &(t) only depends on the past (since the kernel K has support [0,1]), leads to IV(t).

The following result, which gives the asymptotic distribution of A, is a special case of Theorem
3.2 of McKeague (1988a). Let L(t) and V(t) denote the p x p matrices with entries Lij(t) =

EYli(t) Yk(t) and Vik(t) = EY 1 ,(t)Ymk(t) Al I(t), respectively, and let D[to, 11P denote the prod-
uct of p copies of the Skorohod space D[to, 1].

Theorem 3.3. Suppose that ap, ... , c,, L(.), V(.) are continuous, L(t) and V(t) are nonsingular for
all t E [0,1], A(t, Zt) is bounded away from zero, b. -0 0, nb~n -- oo, and the kernel function K has
bounded variation. Let 0 < to < 1. Then, under Aalen's additive risk model, ,F'(A - A)-m in
D[to, 1]P, where m is a p-variate continuous Gaussian martingale with mean zero and covariance

function

Cov(mj(t), mk(t)) = f.(V-1(e))jk do.

12



8.3. The general nonparametric model

The fully nonparametric model (3) was first studied by Beran (1981). It can be applied success-

fully only when the sample size is very large and there are a small number of covariates. Inference

for this model has been studied further by Doksum and Yandell (1982), Dabrowska (1987a, 1987b),

McKeague and Utikal (1987, 1988a) and Cheng (1987). In this section we discuss the main result

of McKeague and Utikal (1988a) who introduced an estimator for the "doubly" cumulative hazard

function A(t, z) = fo f" A(a, x) da dx, (t, z) E[0, 12. This estimator turns out to be important in
the development of goodness-of-fit tests for specific regression models. For simplicity we shall only

consider the case of a single covariate (p = I).
Let I.,, r = 1,...,d, be a partition of the unit interval, where I, = [z,- 1 , z,), z, = r/d, and 4

is an increasing sequence of positive integers. Let Ni, (t) be the counting process which registers the

jumps of Ni(t) when Zi(t) E ., so that Ni,(t) =ft I{Z,(.) E I.J}dN,(s). Beran (1981) suggested

that the cumulative conditional hazard function A(t, z) = fo A(., z) ds could be estimated by the

Nelson-Aalen type estimator

A(t, Z) =-- y() (s) , for It = 1,,
Jo(n)

and that the conditional survival function S(tz) = e- A ( , ) could be estimated by the product-limit

estimator

S(tlz) = -I(1 - zA(ez)),
S<t

where Yr(n)() = I{Z(s) E I.r}Yi(s) and N (" ) = E' = Ni,. Here d. should tend to infinity

at a suitable rate as n -- , o. Dabrowska (1987a, 1987b) obtained weak convergence results for

such estimators in the case of right-censoring and non-time-dependent covariate, using the classical

approach of Breslow and Crowley (1974). McKeague and Utikal (1987), using the martingale ap-

proach, obtained asymptotic results for A under general predictable censoring and time-dependent

covariates.

McKeague and Utikal (1988a) proposed to estimate A by

.W(t, z) = A (t, x) dz, (3.9)

and obtained the following weak convergence result for 1. Let Jo' fo y(, x) dW(s, x) denote a
continuous version of the Wiener integral of a function 0 E L 2 ([0, 112, ds dx) with respect to a

Brownian sheet W; see Wong and Zakai (1974). Suppose that for each t r [0, 1], the random

vector (Zt,Y) is absolutely continuous with respect to the product of Lebesgue measure on [0,1]

and counting measure, and denote the corresponding density by fz(t)y(t)(z, y). Also, assume that

fz(t)Y(t)(z, 1) is a positive, continuous function of (t, z) E [0, 112. Let D2 denote the extension of

Skorohod space D[0, 11 to functions on [0, 112, as defined in Neuhaus (1971).

13
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Theorem 3.4. Suppose that A is Lipschitz, d'J/n - o and d. = o(n 6 ) for some 6 E ( , 1). Then
- Vn(A- A)-.m in D2 as n --+ co, where m = (m(t, z), (t, z) E [0,1]2) is given by

m(t, Z) = J0  V- , \ dW(s, x),

h(s,x) -~ X)fZ. =.,(.) y(.)(Z,. 1)" *

Proof. (Sketch) It can be shown easily that V/ni(.i - A) is asymptotically equivalent in distribution

t o M ( ') , w h e r et

( , 1z) t (

d = 2 r f ~(), (3.10)

Mn) (t) I{Z,(s) E 1)Y()dMj,(), r=1,...,d,.

Since (n) (. z) is a martingale for each fixed z, Rebolledo's martingale central limit theorem can
can be used to show that the finite dimensional distributions of M(n) converge to those of m (cf.
the proof of Theorem 2.3). Finally, {M(M), n > 1) is shown to be tight in )2 by checking the
moment conditions of Bickel and Wichura (1971).

9.4. The general proportional hazards model

Tibshirani (1984) and Hastie and Tibshirani (1986) considered a local partial likelihood tech-
nique for estimating the log relative risk function t/(z) = log r(z) in the general proportional hazards

model (4) with p = 1. O'Sullivan (1986a, 1986b) studied a penalized partial likelihood estimator

for Y and established consistency of that estimator.

McKeague and Utikal (1988a) considered estimating the cumulative relative risk function
R(z) = fo' r(x) dz by A(z) = !(1, z), where I is defined by (3.9). By Theorem 3.4 and the

continuous mapping theorem (Billingsley, 1968) we obtain that V/i(fA - R)AmR, where m is a

continuous Gaussian martingale with covariance function

Cov(mR (zl), MR (z)) = j J h(s, x) ds dx,

provided that A0 is constrained to satisfy Ao(1) = 1 (to ensure identifiability). Similarly, the
cumulative baseline hazard function A0 can be estimated by A(t) = 1(t, 1). If R is constrained

to satisfy R(1) = 1, then i/i(i - Ao)- m° , where m° is a continuous Gaussian martingale with

covariance function

Cov(m0 (t), m°(th)) = t j h(e, x) dx do.

14
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S.5. Goodnese-of-it tests

There is an extensive literature on goodness-of-fit tests for Cox's proportional hazards regression

model, see the references in Arias (1988). Recently, McKeague and Utikal (1988a, 1988b) have

developed consistent goodness-of-fit tests for Cox's model, Aalen's additive risk model and the

general proportional hazards model against the alternative of the general nonparametric model

(3).
Consider testing the null hypothesis Ho: Cox's proportional hazards model (1) holds over the

region (t, z) E [0, 1]2. Under H0 , the natural estimator of A is

1(t, Z) = A(t) f efi'dz,

where and Ai are defined in Section 3.1 and, if (T, Z,(Ti)) falls outside 10, 1]2, the survival time

T, is regarded as being censored (i.e. 4. is set to 0). The Kolmogorov-Smirnov type test statistic

T~n = fi5up(t,)EO1I2 IA(t, z) - 1(t, z)I could be used for testing Ho. The following result
provides a way of determining (based on simulation) an appropriate critical region for TW'. Define

S(ft(,t) =- 1 En j= Z.(t)3Yj(t) 1(0 :5 Zi(t) <5 1) ePZIMt, and define the quantities a(3), E etc. of

Section 3.1 in terms of this SW'.

Theorem 3.5. (McKeague and Utilcal, 1988b) Suppose that the conditions of Theorems 3.1 and 3.4

hold. Then, under Ho, 1)(A -- '#~m' in D2 , where

m'(t,z) =jf 'I-~u,)dW(u,x) - (z)jtf JV *9(~u) dW'(u,,)

-COt, Z) 101 f I - 8(1) ('80'u ) '4 -~) Wu )

h(u,x) = AO (U) ep-2()(ou

fZ (.) Y(X(,1)

g(u, -) = AO o-Wh~zf(u) Y(U) (Z,1),

b(z) =Ze#-odz,

c(t, z) = E-'(Ao(t) fo zeodz - b(z) jo e(jo, u) Ao(us) du).

Proof. (Sketch) Using a Taylor series expansion of eft about 6 = flo and the representation of

vf-A- Ao) given by Andersen and Gill (1982, (2.8)),_it can be shown easily that vf/-(i - 1) is

asymptotically equivalent in distribution to the process M~n) (t, Z)-b(z) MO (t)-cqt, z) I~ (1), where
Wn)is defined by (3.10), jai(t) n- 12U(Po, t) and MO (t) is the martingale part of vf/i(A - Ao)

given by

MO~) n 2 -g-O~ 1(0: i(): )di()
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Using Rebolledo's martingale central limit theorem (see the proof of Theorem 3.4 of Andersen and
Gill, 1982) it can be shown that (X , ' )9 (mo, ml) jointly in D[O, 1]2, where mo and m, are the
independent Gaussian martingales defined in Theorem 3.2. The key step in the proof is to see that
(mo, i) can be represented in terms of a single Brownian sheet process W:

mno(t) = 101 f (O)(Plo, u) dW (u,X),

=I t z SO 010 U) vY) dW (u, X).

Then, using Rebolledo's martingale central limit theorem again, and also using Theorem 3.4, it
can be shown that (M, MO, M1 )-?(m, in, mn1 ) jointly in D~2 x D[O, 1].Applying the continuous
mapping theorem, we obtain M/( - bin0 - CM, (1) m i'. This completes the proof.
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